ఇండెక్స్ చేయబడింది
  • అకడమిక్ జర్నల్స్ డేటాబేస్
  • J గేట్ తెరవండి
  • జెనామిక్స్ జర్నల్‌సీక్
  • JournalTOCలు
  • పరిశోధన బైబిల్
  • ఉల్రిచ్ పీరియాడికల్స్ డైరెక్టరీ
  • ఎలక్ట్రానిక్ జర్నల్స్ లైబ్రరీ
  • RefSeek
  • హమ్దార్డ్ విశ్వవిద్యాలయం
  • EBSCO AZ
  • OCLC- వరల్డ్ క్యాట్
  • విద్వాంసుడు
  • SWB ఆన్‌లైన్ కేటలాగ్
  • వర్చువల్ లైబ్రరీ ఆఫ్ బయాలజీ (విఫాబియో)
  • పబ్లోన్స్
  • మియార్
  • జెనీవా ఫౌండేషన్ ఫర్ మెడికల్ ఎడ్యుకేషన్ అండ్ రీసెర్చ్
  • యూరో పబ్
  • గూగుల్ స్కాలర్
ఈ పేజీని భాగస్వామ్యం చేయండి
జర్నల్ ఫ్లైయర్
Flyer image

నైరూప్య

Interactive Network Exploration in the Kdd Process, Contributions in the Study of Population Variability of a Corn Fijivirus

Mario Alejandro Garcia, Maria de la Paz Gimenez Pecci, Juan Bautista Cabral, Adrian Nieto Castillo and Irma Graciela Laguna

The genetic variability of individuals of the same species can be studied through networks that represent the genetic distances between them. We studied the case of Mal de Rio Cuarto virus (MRCV), defining distance measures between genome profiles of different individuals and creating a network of haplotypes. Topological properties of the network were analyzed and this was examined in two dimensions, forming space-time environments. The examination led to the observation that, in the first crop years tested, the number of haplotypes and the distance between them was greater than in subsequent crops. A variability indicator was calculated for each environment and compared with its expected value, confirming the observation made during the examination and concluding that virus variability decreased after an epidemic occurred during the crop year 1996-97. An analysis of variability of MRCV through haplotype networks is presented. We propose the use of this tool, which is unusual in KDD processes, bringing a new approach that aspect the concepts of knowledge representation, structured data modeling, visualization, exploration and interactive discovery.
The main contribution of this case to the KDD process is the proposal of interactive exploration of networks, which turned out to be intuitive and easy to apply for analysis.

నిరాకరణ: ఈ సారాంశం ఆర్టిఫిషియల్ ఇంటెలిజెన్స్ టూల్