ఇండెక్స్ చేయబడింది
  • J గేట్ తెరవండి
  • జెనామిక్స్ జర్నల్‌సీక్
  • అకడమిక్ కీలు
  • JournalTOCలు
  • చైనా నేషనల్ నాలెడ్జ్ ఇన్‌ఫ్రాస్ట్రక్చర్ (CNKI)
  • ఉల్రిచ్ పీరియాడికల్స్ డైరెక్టరీ
  • RefSeek
  • హమ్దార్డ్ విశ్వవిద్యాలయం
  • EBSCO AZ
  • జర్నల్స్ కోసం అబ్‌స్ట్రాక్ట్ ఇండెక్సింగ్ డైరెక్టరీ
  • OCLC- వరల్డ్ క్యాట్
  • పబ్లోన్స్
  • జెనీవా ఫౌండేషన్ ఫర్ మెడికల్ ఎడ్యుకేషన్ అండ్ రీసెర్చ్
  • యూరో పబ్
  • గూగుల్ స్కాలర్
ఈ పేజీని భాగస్వామ్యం చేయండి
జర్నల్ ఫ్లైయర్
Flyer image

నైరూప్య

A Comparative Quantification in Cellularity of Bone Marrow Aspirated with two New Harvesting Devices, and The Non-equivalent Difference Between A Centrifugated Bone Marrow Concentrate And A Bone Marrow Aspirate As Biological Injectates, Using A Bi-Lateral Patient Model

Peter A. Everts, John Ferrell, Christine Brown Mahoney, Glenn Flanagan II, Moises Irizarry-de Roman, Rowan Paul, Natalie Stephens, Kenneth Mautner

The first aim of this study was to examine the cellularity and quality of autologous bone marrow aspirates harvested with two novel FDA-cleared devices, namely the Aspire™ bone marrow aspiration system (AS-BMAS) and the Marrow Cellution bone marrow aspiration device (MC-BMAD). Compared to traditional bone marrow harvesting needle systems, both these devices have a closed distal tip, avoiding preferential marrow collection (peripheral blood aspiration) from deeper cavity regions, whereas the side holes facilitate more horizontal marrow extraction. In all patients, a similar harvesting technique was used. The second aim was to demonstrate the effectiveness of mechanical centrifugation of a large volume of extracted bone marrow to produce a bone marrow concentrate (BMC). Finally, we directly compared bone marrow constituents aspirated with MC-BMAD with a BMC, generated by centrifugation of bone marrow harvested using the AS-BMAS. A bi-lateral patient model was used for all comparisons. All cellular analyses included the measurement of Colony-Forming Units-fibroblasts (CFU/f) levels, CD34+cells/ml, Total Nucleated Cells (TNCs)/ml, platelets/ml, and Red Blood Cells (RBCs)/ml in a single, FDA-approved laboratory, compliant with Good Manufacturing Practice regulations. A total of 12 patients consented to the study. In the direct BMA comparison, the AS-BMAS bone marrow yielded significantly higher CFU/f counts and TNC concentrations than the MC-BMAD (1,060/ml, 33.5 × 106/ml, and 610/ml and 28.6 × 106/ml, respectively), with comparable platelet and RBC concentrations. Data following BMA concentration to produce a BMC revealed highly significant cell yields, fewer RBCs, and lower hematocrit (HCT). A direct cellular comparison between the aspirate of the MCBMAD and centrifugated BMC following AS-BMAS marrow extraction showed highly significant differences in cellularity. The AS-BMAS produced cell concentrations of CFU/f, CD34+ cells, TNCs, platelets, and RBCs that were comparable, or greater than, the predicate device. We believe that concentrating bone marrow is a consistent and safe method to produce a BMC that has the potential to be clinically effective. Furthermore, data indicate a non-equivalent difference in BMC cellularity, when compared to a non-filtered and non-centrifugated BMA for clinical use.